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Abstract. We investigated numerically localization properties of electron eigenstates in a chain with long-
range correlated diagonal disorder. A tight-binding one-dimensional model with on-site energies exhibiting
long-range correlated disorder (LCD) was used with various disorder strength W . LCD was defined so
that it gave a power-law spectral density of the form S(k)αk−p, where p determines the roughness of the
potential landscape. Numerical results on the correlation length ξ of eigenstates shows the existence of the
localization-delocalization transition at p = 2. It is found that the critical values for disorder strength Wc

and also the critical exponent ν for localization length change with the values of p.

PACS. 05.60.Gg Quantum transport – 72.15.Rn Localization effects – 72.20.Ee Mobility edges; hopping
transport – 64.60.Cn Order-disorder transformations; statistical mechanics of model systems

1 Introduction

Electronic wave functions in perfectly ordered crystal are
extended Bloch’s wave functions, implying that the prob-
ability density of an electron is the same over the entire
crystal. But when the periodic structure is destroyed by
introducing disorder in the crystal, the wave function can
become localized. Although the exact treatment of the
problem is cumbersome, there are model systems which
contain the basic physical ingredients of the system. The
simplest theoretical model for studying the nature of one
electron states in disordered states was introduced by An-
derson [1]. The model shows that if the disorder is very
strong the wave function may become exponentially local-
ized with a characteristic localization length ξ. From scal-
ing arguments it is also well-known that electron states are
exponentially localized in one and two dimensions in any
amount of disorder. In three dimensional systems at zero
temperature a localization-delocalization transition takes
place at critical value Wc [2,3]. For a uniform disorder dis-
tribution, Wc = 16.5. For W <Wc despite some degree of
disorder, the electron wave function is extended, and the
system behaves as a conductor, whereas when W > Wc,
the wave function becomes localized, and the system be-
haves as an insulator. However, introducing correlation in
the disorder can markedly change the physics.

The effects of long-range power-law correlated disorder
or scale-free disorder are omnipotent in nature [4]. This
is not only observed in physical systems [5,6] but also
in many other diverse systems including biological and
economical systems [7,8]. Of particular interest to us in
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this work, however, is the influence of long-range power-
law correlated disorder in the neighborhood of a metal-
insulator transition when the correlation length ξ becomes
sufficiently large.

In recent years several low-dimensional models with
correlated disorder have been proposed to investigate
the localization properties of one-dimensional systems. A
one-dimensional tight-binding random dimer model was
studied in references [9–13]. The model shows that there
exists single resonant energy levels of extended states.
Similar resonant levels of extended states are even found
in one-dimensional models with short-range correlated dis-
order [14,15]. The absence of localization has also been
reported to occur in disordered chains with correlated off-
diagonal interactions [16,17].

More recently, de Moura and Lyra [18] have also
studied the localization properties of the one-dimensional
Anderson model with long-range correlated disorder. The
on-site energy landscape is generated by considering the
potential as the trace of a fractional Brownian motion with
a specified spectral density S(k)αk−p, namely power-law
spectral density. It has been found that the localization
length diverges for p > 2 within a finite range of en-
ergy values exhibiting an Anderson transition with mobil-
ity edges separating localized and extended states. In this
work, the roughness of the potential landscape defined by
the exponent of the power-law spectral density p was con-
sidered. But the effect of the disorder strength W charac-
terized by the amplitude of the potential was unclarified.
There are also several other works using the same power-
law spectral density [19–22].

The effects of disorder strength W on the localization
properties of eigenstates have also been investigated by
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using a sequence of long-range correlated disorder which
is produced by the Fourier filtering method [23]. The main
outcome of this work is that there is a critical disorder am-
plitudeWc = 4 independent of the values of p. In this work
the amplitude of energy sequence or disorder strength {εi}
is controlled by imposing a normalization condition on the
variance of energy sequence as �ε =

√〈ε2〉 − 〈ε〉2 = 1.
The relevance of this condition is going to be examined
in the following section. But, it is worth mentioning from
the outset that the true effect of W on the localization
properties of eigenstates may disappear due to this con-
dition. Therefore, a more relevant consideration is needed
to present the effects of the disorder strength W on the
long-range correlated systems. That is mainly what we are
going to consider in this work.

This paper is organized as follows. In the following sec-
tion we are going to define an on-site potential landscape
to study the effect of disorder strength. In Section 3 we
are going to present a brief description of Anderson tight
binding model and finite-size scaling which are going to
be used in our numerical calculations. In Section 4, we are
going to present our numerical results and the calculated
critical values of disorder strength Wc and critical expo-
nent ν. Our conclusion will also be presented in the same
section

2 Long-range correlated potential sequence

In order to introduce long-range correlations in the
disorder distribution, there are two main methods, the
fractional Brownian motion consideration and the Fourier
filtering method. In the fractional Brownian motion con-
sideration [24–26], the site energies are considered to be in
a sequence that describes the trace of a fractional Brown-
ian motion with a specified spectral density S(k)αk−p. For
p = 0 one recovers the traditional white noise of the An-
derson model with δ-correlated disorder 〈εiεj〉 = 〈ε2i 〉δi,j .
The exponent p is directly related to the Hurst expo-
nent H of the rescaled range analysis (p = 2H + 1)
which describes the self-similar character of the energy se-
quence and persistent character of its increments. When
H > 1/2 the process is said to have long-range correlation
while H < 1/2 means that the process is uncorrelated.
In the second method, a sequence of long-range corre-
lated potential {εi} is produced by the Fourier filtering
method [27,28]. This method is based on a transforma-
tion of the Fourier components of a random number se-
quence. The outline of the model is: (i) a sequence {xi} of
uncorrelated random numbers with a Gaussian distribu-
tion is prepared; (ii) its Fourier components {xq} are com-
puted by the Fourier transformation; (iii) a new sequence
is generated for a given p from the relation εq = q−p/2xq;
(iv) finally, the desired potential sequence {εi} having
a power-law spectral density is obtained as the inverse
Fourier transform of {εq}.

In the study of long-range correlated one-dimensional
electron systems, the on-site potential produced by the
first method has been employed by de Moura and Lyra

Table 1. The constants C of equation (2).

L p = 1 p = 1.5 p = 2 p = 2.5 p = 3 p = 3.5 p = 4

4 × 104 2.3 10.2 73.7 586.6 4956 42822 374630
2 × 104 2.2 8.6 51.3 347.7 2471 17961 132171
1 × 104 2.1 7.1 36.1 206.2 1234 7552 46774

without considering the effect of the disorder strength. In
this work the on-site long-range correlated potential was
produced by the following relation

εi =
N/2∑

k=1

[

k−p

(
2π
N

)1−p
]1/2

cos
(

2ikπ
N

+ φk

)
(1)

where N is the number of sites and φk are N/2 indepen-
dent random phases uniformly distributed in the inter-
val [0, 2π].

The effect of the disorder strength is considered in the
work of Shima, Nomura, and Nakayama. In this work the
on-site potential is produced using the Fourier filtering
method. The effect of the disorder strength was related
to the width of uncorrelated Gaussian distribution, the
first step of the Fourier filtering method. Later, the ob-
tained long-range correlated potential sequence was nor-
malized with the relation �ε =

√〈ε2〉 − 〈ε〉2 = 1. For
short-range correlated disorder Anderson models, relating
the disorder strength to the width of the Gaussian distri-
bution is a relevant consideration since on-site potential
is taken directly from the Gaussian distribution. However,
if Fourier filtering method and the imposed renormaliza-
tion condition are considered, the true effect of the disor-
der strength disappears. In other words, the amplitudes
of on-site potential sequences {εi} are set to be constant
due to the imposed normalization condition. Furthermore
it is well-known that the disorder strength is only re-
lated to the amplitude of the on-site potential energy se-
quence {εi}. Thus, relating disorder strength to the width
of the Gaussian distribution in the study of long-range
correlated disorder turns out to be an irrelevant consider-
ation. Therefore, we think that the true effect of the dis-
order strength is absent in the work of Shima, Nomura,
and Nakayama due to the imposed renormalization con-
dition. In other words, studying the effect of the disorder
strength in a long-range correlated disorder chain is still
an important problem. To do so, one has to properly de-
fine a long-range correlated disordered potential sequence
with the dependence of disorder strength. We think the
following procedure is effective in keeping the true effect
of the disorder strength in the long-range correlated en-
ergy sequence.

As a first step, the potential in equation (1) was nor-
malized with the relation �ε =

√〈ε2〉 − 〈ε〉2 = 1. The
normalization coefficients denoted by C are given in Ta-
ble 1. Thus the normalized energy sequence εn

i is equal
to εi/C.

In order to present the effect of the disorder on the
system, we are going to use a modified form of the above
potential sequence in the following manner. If the disor-
der is totally uncorrelated (p = 0), it is easy to see from
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Fig. 1. The long-range correlated potential sequence obtained
from equation (4) for W = 3.4. (a) Is plotted for p = 3, (b) is
plotted for p = 2, and (c) is plotted for p = 1.5.

Anderson theory that an increase in W trivially induces
a strongly localized wave function. Consequently, W can
be related to the amplitude of the long-range correlated
potential by the following relation

εn
i (W ) =

W√
12
εn

i (2)

where the modification term W/
√

12 is just the standard
deviation of a Gaussian distribution. We are going to use
this modified potential sequence throughout this work. We
think this modified on-site potential sequence keeps the
true effect of the disorder strength on the system since
it is related to the amplitude of the energy sequence. In
addition, when the disorder is sufficiently long-ranged to
yield a conducting phase, the system may have a critical
disorder strength Wc separating the conducting and insu-
lating phases. The determination ofWc for different values
of p leads to the phase diagram in the W −p space, as well
as providing a better understanding of the properties of
long-range correlated systems.

3 Theoretical model

3.1 Correlation length

As a model system, we considered noninteracting electrons
in a one-dimensional long-range correlated disordered sys-

Fig. 2. The long-range correlated potential sequence obtained
from equation (4) for W = 5. (a) Is plotted for p = 3, (b) is
plotted for p = 2, and (c) is plotted for p = 1.5.

tem within a tight binding approximation. For a discrete
lattice chain, the Schrödinger equation of the model is ex-
pressed as

εiψi + t(ψi+1 + ψi−1) = Eψi (3)

where ψi is the amplitude of the wave function at the ith
site of the lattice. The overlap integral parameter or the
hopping energy t is going to be set unity in the following.
A sequence of long-range correlated disorder potential is
going to be produced by the modified energy sequence
described in equation (2). The correlation length ξ of a
state with energy E is given as [29]

1
ξL

= − 1
2L

〈ln Ti〉 (4)

where L is the length of the chain, 〈. . . 〉 denotes the av-
erage over possible realization of the system and Ti is the
transmission eigenvalues of a matrix Q, defined as

Q = MTM (5)

where M is the the transfer matrix. For the discrete lat-
tice model Hamiltonian, the propagation of the excitation
along the system can be expressed in the following form:

(
ψi+1

ψi

)
=

(
E − εi −1

1 0

) (
ψi

ψi−1

)
(6)
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where Mi is defined as
(
E − εi −1

1 0

)
. (7)

The transfer matrix M describing the evaluation of the
initial state vector across L sites can be readily expressed
as the product of one-step matrices if the distance between
adjacent sites is set to be unity, that is

M =
L∏

i

Mi. (8)

The eigenvalues of Q are real positive numbers coming in
inverse pairs. Expressing the eigenvalues as qi,1 = eνi and
qi,2 = e−νi , the transmission eigenvalues can be given by

Ti =
2

1 + cosh(νi)
. (9)

To obtain 〈ln Ti〉 for a given L, we take the average over
102 realization of the system. Energy E is fixed at the
band center E = 0 throughout this work.

3.2 Finite-size scaling analysis

In order to study the critical properties of the system, we
are going to develop a scaling relation for a pure 1D system
from the standard one parameter scaling analysis [30–33]
obtained for quasi-1D bar of cross section M × M and
a length L. For quasi-1D bar, the normalized correlation
length Λ = ξ/M was found to obey a scaling theory such
that

d lnΛ
d lnM

= β (lnΛ) (10)

which has a solution of the form

lnΛ = f

(
M

ξ∞

)
, (11)

where ξ∞ is a characteristic length or correlation length
in the thermodynamic limit. It was also a common pro-
cedures to produce numerical data by keeping L constant
and M as a variable in those works.

In this work, however, we study a pure 1D chain with
a length L. We simply assume that the normalized corre-
lation length Λ = ξ/L obeys the following relation

d lnΛ
d lnL

= β(lnΛ) (12)

which also has a solution of the form Λ = g(L/ξ∞) or
equivalently lnΛ = f(L/ξ∞). This final relation was used
as a scaling relation in reference [23] from the outset. Here,
ξ∞ is also a characteristic length or correlation length,
which can be identified with the localization length of the
insulator, and which scales as the reciprocal of the resis-
tivity of the metallic phase. The localization length of an

Fig. 3. The energy dependence of the Lyapunov exponent for
p = 2 and W = 1.

infinite system obeys the following relation near the criti-
cal point W = Wc,

ξ∞α|W −Wc|−ν . (13)

But in practice only finite, and still relatively small, sys-
tems are numerically accessible. In order to determine
the critical strength Wc and the critical exponent ν, one
can only use the finite size data for Λ and the scaling
function f(L|W −Wc|ν). One can always find an equiv-
alent function for the scaling function in the form of
F (L1/ν |W − Wc|). Thus the scaling equation becomes,
lnΛ = F (L1/ν |W −Wc|). This final relation allows expan-
sion of the scaling function around the critical point as

lnΛ = a0+a1|W−Wc|L1/ν +a2|W−Wc|2L2/ν + . . . (14)

We use this expansion of the scaling function to obtain the
critical disorder strength Wc and the critical exponent ν
by terminating the expansion at the third order.

4 Numerical results and conclusions

4.1 Existence of extended states

In this section, we are going to investigate the nature of
electron states by computing three different physical quan-
tities. The first quantity going to be considered is the aver-
age Lyapunov exponent, defined as the inverse of the cor-
relation length γ = 1/ξ [34]. In Figure 3 we show plots of γ
versus E for the various values of the system size at p = 2
and W = 1. Both data for L = 104 and L = 2 × 104 show
that the Lyapunov exponents vanish within a finite range
of energy values revealing the presence of extended states
within this energy interval. More importantly, γ(E) data
for these two system sizes appears to be the same within
this energy interval, meaning that the extended phases are
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Fig. 4. The conductance distribution for p = 4 and W = 1.

stable as L grows larger. This is a good indication of the
existence of extended states as L → ∞ or in the thermo-
dynamic limit. As a second consideration in the search for
the existence of extended states we find that computing
conductance distribution P (g) is a relevant perspective.
The conductance g is defined with the Landuer formula
as 2T for a single channel transport, here T is defined
by equation (9). The factor of 2 in the definition of the
conductance is due to the electron spin degeneracy.

The nature of conductance distribution by itself is a
really important subject in the treatment of localization
problems, especially in the discussion of the validity of
single parameter scaling theory. It is now well-known that
single parameter scaling theory is valid if P (g) is fully
determined by a single parameter [35,36]. But, in this pa-
per P (g) is going to be computed in terms of its possible
indication of the presence of the conducting states in the
thermodynamic limit.

In Figure 4, P (g) is plotted for various values of L at
p = 4, W = 1 and E = 0. From the figure it is apparent
that there are only slight changes in P (g) compared with
the changes in the system size. These conductance distri-
butions produce an average conductance 〈g〉 having almost
the same values for each system size. In other words, 〈g〉
is almost independent of system size L at these particular
parameters of the system. This result is also a relevant
indication of the presence of the conducting phase in the
thermodynamics limit.

The last consideration in the study of the existence of
extended states in this paper is going to be investigated
by computing the normalized localization length Λ = ξ/L.
In Figure 5, we show plots of Λ versus L at various values
of W for p = 3. For values of W = 1, 1.5, and 2.5, the
values of Λ(L) oscillate around constant lines. Whereas,
for W = 5.5, Λ(L) decreases as L increases. The former is
also another good indication of the existence of conduct-
ing states in the thermodynamic limit, while the latter
indicates that the system becomes more localized as L in-
creases. Thus one can conclude that the system is deeply

Fig. 5. The normalized correlation length Λ = ξ/L as a func-
tion of L for various values of W for the case of p = 3.

localized in the thermodynamic limit at W = 5.5. From
the results of Figure 5, one can also infer that there might
be metal-insulator transition at a particular value of dis-
order strength W . Actually, a similar procedure was em-
ployed in the determination of the critical energy levels in
reference [18]. The critical exponent ν, was also calculated
for p = 2 from the Lyapunov exponent γ(E) in the same
work.

Before terminating this section we want to stress
once more that there exist extended states in the long-
range correlated Anderson model in the thermodynamic
limit. The evaluation of the critical disorder strengths and
critical exponents corresponding to various potential se-
quences are going to be worked out in the following sec-
tion. In doing so we are going to consider finite-size scaling
analysis due to its greater feasibility and its higher possi-
bility of relevance.

4.2 Determination of the critical values

In this section we present our numerical result obtained by
using the finite size scaling methods. We have performed
calculations for systems with sizes approximately equal to
those adopted in reference [23], so we have carried out
scaling analysis with the same resolution. However, due
to our computer time limitation, we have to take the av-
erages over 102 realization of the systems in the following
calculations except for the last three figures, in which the
averages are taken over a 103 realization. Due to the same
reason, we have to work with less data points than the
data points in the cited reference.

In Figure 6, we plotted the normalized correlation
length Λ = ξ/L as a function of disorder strength for the
case p = 1. It can be seen from the figure that Λ rapidly
decreases while the disorder strength increases for every
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Fig. 6. The normalized localization length Λ = ξ/L as a func-
tion of disorder strength for the case p = 1.

Fig. 7. The normalized localization length Λ = ξ/L as a func-
tion of disorder strength for the case p = 1.5.

system size investigated. From the same figure it is easily
seen that Λ is a monotonous function of W for all system
sizes. Furthermore, there is no intersection point, indicat-
ing that the system undergoes no phase transition. Thus
we can conclude that the states are localized at p = 1, in
consistence with other investigations. In Figures 7 and 8,
we also plotted Λ with respect to W for the values of
p = 1.5 and p = 2. As seen from the figures, the values
oféΛ are almost the same at around W = 2.5. However,
Λ turns out to be a monotonous function for W > 2.5.
This is an indication of phase transition. But, our further

Fig. 8. The normalized localization length Λ = ξ/L as a func-
tion of disorder strength for the case p = 2.

Fig. 9. The normalized localization length Λ = ξ/L as a func-
tion of disorder strength for the case p = 2.5.

scaling analysis around W = 2.5 shows that there is no
critical transition at around that point for p = 1.5. From
these three figures we can conclude that there might be
possible phase transition for larger values of p ≥ 2.

Figures 9–11 also illustrate the behavior of Λ as a func-
tion of W for p = 2.5, p = 3, and p = 4 respectively. All of
these figures show two common striking features. The first
is of course the kinks around some particular values of W .
For instance, in Figure 9 at around W = 2.8 there is a
sharp decrease. The same features can be seen at around
W = 3 in Figure 10 and at around W = 3.95 in Figure 11.
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Fig. 10. The normalized localization length Λ = ξ/L as a
function of disorder strength for the case p = 3.

Fig. 11. The normalized localization length Λ = ξ/L as a
function of disorder strength for the case p = 4.

The second observation that can be made concern is
the values of Λ with respect to p. For W less than cited
values, the values of Λ rise as p increases indicating that
the growth of p for W less than cited values causes an in-
crease in the correlation length of eigenstates. In contrast,
the values of Λ for W larger than cited values decrease as
p increases. Thus, for W larger than cited values, larger
values of p produce strongly-localized eigenstates.

We have performed further scaling analysis in Fig-
ure 12 in order to find out the critical value of disorder
strength Wc and the critical exponent ν for p = 4. From

Fig. 12. The normalized correlation length Λ = ξ/L as a
function of disorder strength for the case p = 4. Plotted to
find the critical value of Wc.

Fig. 13. The normalized correlation length Λ = ξ/L as a
function of disorder strength for the case p = 3. Plotted to
find the critical value of Wc.

the figure it is apparent that Wc is equal to 3.992 since
all curves in this figure intersect at this value. This is a
good indication of the presence of the Anderson transi-
tion at W = Wc. Fitting the data of lnΛ for various L to
equation (14), we obtain ν = 1.67. Following the same pro-
cedure, we have also determined the critical value of dis-
order strength Wc and the critical exponent ν for p = 2.5
and p = 3. It was found from Figure 13 that Wc = 2.875
and ν = 1.73 for p = 3. For p = 2.5, it was found from
Figure 14 that Wc = 2.746 and ν = 1.82. From these
analysis we can conclude that the critical values of the
systems depend on the long-range correlation parameter
p. Intriguingly, all data of Λ(W ) for p > 2 indicates that
Wc increases when p increases, while ν decreases when p
increases.
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Fig. 14. The normalized correlation length Λ = ξ/L as a
function of disorder strength for the case p = 2.5. Plotted to
find the critical value of Wc.

5 Conclusions

In this work we investigated the combined effects of disor-
der strength and the order of the long-range correlation or
the potential roughness characterized by p. We have shown
that the electronic states in a one-dimensional Anderson
model of on-site potential with the long-range correlation
proposed by de Moura and Lyra exhibit a localization-
delocalization phase transition in varying the amplitude
of the long-range correlated energy sequence. For values of
p < 2, we have found no metal-insulator type phase transi-
tion. Whereas, for values p > 2, we have obtained critical
disorder strength Wc which separates extended and lo-
calized regimes. We have also put considerable effort into
relating the critical disorder strength with the order of
long-range correlation p. In general we observed that Wc

increases with increasing p. In other words, the value ofWc

depends on the value of p. This prediction is in complete
contrast to the result found in the work of Shima, Nomura,
and Nakayama, where the value of Wc = 4 is independent
of p. We think this independence is due to the constant
amplitude of potential sequence used in their work. On
the contrary, we have found that the critical exponent ν
decreases with increasing p. This result is in agreement
with the result found in the work of Shima, Nomura, and
Nakayama.
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